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Abstract

In this paper, we discuss the computation and use of solution sensitivities for analyzing radiation diffusion problems

and the dependence of solutions on input parameters. The derivation of the sensitivity equations is given, along with a

description of the method for solving them in tandem with the simulation. The parameter values express material

opacity as a power-law of material temperature and density. The computed sensitivities reveal important qualitative

details about the temperature coupling and diffusion processes. It is also shown that these sensitivities are valuable for

ranking the parameters from most to least influential, designing improved experiments, and quantifying uncertainty in

the simulation results. Lastly, the numerical examples show that these various types of sensitivity analysis are only

moderately expensive to perform relative to solving the simulation by itself.
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1. Introduction

The computer has become the virtual laboratory. In recent years, the rapid growth in computer memory

and speed has meant that multiphysics complex physical systems operating in two and three dimensions can

be simulated, analyzed and quantitative information extracted. The need to quantitatively predict physical

phenomena means that the sensitivity of our answers to uncertainties in the parameters making up physical

models used in simulations must be made known. Otherwise, comparisons between simulation and

experiment are of reduced value.
Simulations of astrophysical and inertial confinement fusion (ICF) phenomena are good examples of

areas where computer simulations are relied on for virtual experimentation [1–3]. Both areas involve

multiple physics models (hydrodynamics, radiation transport, thermonuclear burn) which depend on such
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quantities as equations of state, thermonuclear reaction rates, and opacities. Due to the nature of the

equations involved, the various physics processes tend to couple to each other nonlinearly. Hence, un-

certainty in a parameter in one physics model can affect other physics models in sometimes unexpected

ways. Before we can tackle the sensitivity of solutions in the multiphysics context, however, it is important

to understand solution sensitivity for an isolated physics model. Of particular interest in this paper is

radiation diffusion.

In radiation diffusion, one area of concern is the understanding of temperature and density depen-

dencies within opacity values. In particular, the opacity tends to be a rather strong function of tem-
perature in grey radiation diffusion. The calculation of opacities has given rise to sophisticated codes that

compute the detailed many-body physics of plasmas [4–6]. These codes have, in turn, given rise to opacity

databases. For our purposes, we will consider opacity as a parameterized function of material temper-

ature and density. One of the main objectives then is to quantify the sensitivity of our radiation cal-

culations with respect to parameters used to characterize the dependencies of opacity on material density

and temperatures.

A common method of computing solution sensitivities is to run a simulation code for many values of the

uncertain parameter and then difference the resulting solutions. The technique used is a finite difference
method for computing sensitivities and can be inaccurate unless many runs of the simulation code are

included. The method is time-consuming, especially for codes that require extensive run time for their

solution. An alternative method is to formulate an equation for the solution sensitivities and evolve that

equation along with the original physical system. The resulting method simultaneously gives the solution

and its sensitivity, requiring a single run of the simulation code. The run time for this method is longer than

for the simulation alone, but gives much more information.

In this work, the sensitivities are evolved in time along with the solution. Since sensitivities are defined as

the first derivative of the solution with respect to the model parameter, we can develop an equation for the
sensitivities by simply differentiating the original model problem with respect to the parameter. This is done

for each parameter that we study. Previous work in the area of linear Boltzmann transport has shown that

this method of doing sensitivity analysis can lead to accurate estimates of uncertainties in much faster times

than a sampling approach [7]. Previous work has also showed that sensitivities can be evolved in time to

effectively give solution sensitivities for equations similar to those governing radiation diffusion [8–11].

In this work, we show how this approach is formulated and we demonstrate the application and ver-

satility of carrying out sensitivity analysis experiments on radiation diffusion problems. To illustrate the

method with little sacrifice of reality, we have opted to choose an analytic representation for the opacity.
We show how sensitivities are calculated and used to determine the most critical parameters for different

materials. In addition, we show how sensitivities can be used to make an estimate of the solution error due

to uncertainty in the opacity parameters. The cost of these methods varies from problem to problem, but it

has been a modest multiple of the time it takes for a solution-only calculation.

An important aspect of doing sensitivity analysis as we present in this paper is that the calculations of

sensitivities require opacities to be handled in a fully implicit manner. Fully implicit methods for radiation

diffusion have been a very active area of research recently. Solution techniques for fully implicit methods

have been developed for both multigroup and grey formulations [12–17]. These methods have been shown
to produce very accurate solutions faster than semi-implicit methods on problems in one, two, and three

dimensions as well as in parallel [18–20]. With these advances, the opportunity to compute sensitivities for

radiation diffusion problems can easily be realized.

An outline of this paper is as follows. In Section 2, we describe our general model for radiation diffusion

and in Section 3, we describe our numerical approach to computing solutions and sensitivities. In Section 4,

the details of the model problems are described. In Section 5, we give our numerical results, and in Section

6, we describe how our sensitivity computations can be used to gain further insight into the solutions we

compute. Lastly, Section 7 gives our conclusions.
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2. Flux-limited radiation diffusion model

We consider a sensitivity analysis of the flux-limited grey radiation diffusion equation given by [3,21]

oER

ot
¼ r � c

3qjRðTRÞ þ krERk
ER

rER

 !
þ cqjPðTMÞ � aT 4

M

�
� ER

�
; ð1Þ

where ERðx; tÞ is the radiation energy density (x ¼ ðx; y; zÞ), TMðx; tÞ is the material temperature, qðxÞ is the
material density, c is the speed of light, and a ¼ 4r=c where r is the Stephan–Boltzmann constant. In the

limiter, the norm k � k is just the l2 norm of the gradient vector. The Rosseland opacity, jR, is a nonlinear
function of the density and the radiation temperature, TR, which is defined by the relation ER ¼ aT 4

R. The

Planck opacity, jP, is a nonlinear function of density and material temperature, TM, which is related to the

material energy through an equation of state, EM ¼ EOSðTMÞ.
Eq. (1) is coupled to an equation expressing conservation of material energy given by

oEM

ot
¼ �cqjPðTMÞ � aT 4

M

�
� ER

�
: ð2Þ

We consider Dirichlet and Neumann boundary conditions for system (1), (2), and we apply appropriate

initial conditions, ERjt¼0 ¼ aðTRjt¼0Þ
4
and EMjt¼0 ¼ EOSðTMjt¼0Þ.

As discussed in [22,23], the Rosseland and Planck opacities are taken to be parameterized functions of

temperature and density given by

jðT ; qÞ ¼ bT lqk: ð3Þ

Although [22,23] give specific values of b, l, and k for a number of materials, experimental error usually

makes the precise values of these parameters difficult to quantify, giving rise to uncertainty in the solution

of the diffusion equations. In this paper, we describe a method for calculating sensitivities of the solutions to

the three parameters given in (3). These sensitivities can then be used to evaluate the relative importance of

the parameters as well as estimate error in the solution energies and temperatures due to small uncertainties

in parameter values.
3. Solution and sensitivity methods

In this section, we discuss the solution and sensitivity methods employed for the system given in (1) and

(2). We first show how we discretize the system in space, then discuss our use of ordinary differential

equation (ODE) time integration techniques and solvers. Lastly, we show how the solution method is easily

extended to compute sensitivities.

3.1. Discretization

For spatial discretization, we employ a cell-centered finite difference approach. We use a tensor product

grid with Nx, Ny , and Nz cells in the x, y, and z directions, respectively. Defining ER;i;j;kðtÞ � ERðxi;j;k; tÞ and
EM;i;j;kðtÞ � EMðxi;j;k; tÞ, with xi;j;k ¼ ðxi; yj; zkÞ, and

ER �
ER;1;1;1

..

.

ER;Nx;Ny ;Nz

0B@
1CA and EM �

EM;1;1;1

..

.

EM;Nx;Ny ;Nz

0B@
1CA;
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we can write our discrete equations in terms of a discrete diffusion operator given by

LðERÞ � L1;1;1ðERÞ; . . . ; LNx;Ny ;NzðERÞ
� �T

; ð4Þ

and a local coupling operator given by

SðER;EMÞ � ðS1;1;1ðER;EMÞ; . . . ; SNx;Ny ;NzðER;EMÞÞT; ð5Þ

where

Li;j;kðERÞ ¼
c

3qiþ1=2;j;kjR;iþ1=2;j;k þ
krERkiþ1=2;j;k

ER;iþ1=2;j;k

ER;iþ1;j;k � ER;i;j;k

Dxiþ1=2;j;k

0@
� c

3qi�1=2;j;kjR;i�1=2;j;k þ
krERki�1=2;j;k

ER;i�1=2;j;k

ER;i;j;k � ER;i�1;j;k

Dxi�1=2;j;k

1A,Dxi þ y and z terms

and

Si;j;kðER;i;j;k;EM;i;j;kÞ ¼ cqi;j;kjP ;i;j;k aT 4
M;i;j;k

�
� ER;i;j;k

�
: ð7Þ

To approximate the Rosseland opacity jRðTRÞ at a cell face xiþ1=2;j;k, we first compute the average of the
fourth powers of TR at xi;j;k and xiþ1;j;k. The Rosseland opacity is then obtained by evaluating jR using the

fourth root of this average. In the flux-limiter, the norm of the gradient vector is approximated using bi-

linear interpolation to get the off-direction components of the two relevant interfaces, and the denominator

is obtained using arithmetic averaging.

Thus, our discrete scheme is to find ERðtÞ and EMðtÞ such that

dER

dt
¼ LðERÞ þ SðER;EMÞ; ð8Þ
dEM

dt
¼ �SðER;EMÞ: ð9Þ

We write (8) and (9) as a single system of ODEs by defining the solution vector and nonlinear function as

y � ER

EM

� �
and f � LðERÞ þ SðER;EMÞ

�SðER;EMÞ

� �
to obtain the discrete ODE system

dy
dt

¼ f ðt; yÞ: ð10Þ

3.2. Solution method

The time integration of the ODE system (10) is accomplished via the parallel ODE solver CVODE [24], a

software package written in the C language for the solution of general ODE systems. CVODE uses the
backward differentiation formula (BDF) [25,26] methods to perform the time integration. The BDF

methods are variable in order and step size and are also implicit. This method results in a coupled, non-

linear system of the form



S.L. Lee et al. / Journal of Computational Physics 192 (2003) 211–230 215
yn ¼
Xq
j¼1

ajyn�j þ hb0f ðtn; ynÞ ð11Þ

that must be solved for the solution, yn, at the new time, tn. In this system, q is the order of the BDF method

used at that step, b0 is a coefficient related to the order of the method, and h ¼ tn � tn�1 is the current

stepsize. For example, solving the ODE system with the backward Euler method (i.e., the BDF method of

order 1), leads to the following nonlinear system:

0 ¼ GðyÞ � y � hf ðtn; yÞ � yn�1 i:e:;
yn � yn�1

h

�
¼ f ðtn; ynÞ

�
ð12Þ

that must be solved for y ¼ yn at each time step. For the solution of the nonlinear systems, we use an inexact

Newton–Krylov method with Jacobian-vector products approximated by finite differences of the form

G0ðyÞv � Gðy þ hvÞ � GðyÞ
h

; ð13Þ

where h is a scalar. Within the Newton–Krylov paradigm using (13), only the implementation of the

nonlinear function is necessary and Jacobian matrix entries need never be formed or stored. Heuristic

arguments for the case of systems arising from the implicit integration of ODEs show that h ¼ 1 works

quite well [27] and is the choice used in CVODE. An explicit predictor, ynð0Þ, is used as an initial guess to the

nonlinear system (12).

We use the GMRES Krylov iterative solver for solution of the linear Jacobian system at each

Newton iteration [28]. Preconditioning is generally essential when using Krylov linear solvers, and we

employ a number of techniques including lagging and multigrid [29] within our preconditioning
strategy. The solution method presented above has been tested on very large, three-dimensional

problems and has been shown to be parallel scalable up to almost 6000 processors. As our focus in on

the calculation of solution sensitivities, the specific details of the preconditioning method are not

discussed here. We refer the interested reader to the discussion of the Schur complement method in

[14].

3.3. Computation of sensitivities

In this paper, we examine the effects on solutions to the radiation diffusion model due to changes in

values of the parameters in (3). These effects are measured in sensitivities of the solutions, defined by

sp �
oy
op

¼
oER

op
oEM

op

 !
; ð14Þ

where p is one of the set of parameters, fl; b; kg, and sp is the expected change in ER and EM due to changes

in the parameter p. The initial values for sp are either all zeros (if p occurs only in f ), or has nonzeros

according to (14) for how the initial values of y depend linearly on p.
We can differentiate system (10) with respect to one of our opacity parameters to get the following

system:

dsp
dt

¼ of
oy

sp þ
of
op

; ð15Þ

where p 2 fl; b; kg. Eq. (15) is a linear ODE system that is easily solved with the same solution methods as

described above for the original problem.
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We calculate the solution to these equations with the sensitivity version of CVODE [30]. This software

augments the ODE system given in (10) with the linear systems (15) for the sensitivity of the solution with

respect to each parameter. Thus, a single ODE system is solved giving the radiation diffusion solution as

well as the sensitivities of that solution to each of the opacity parameters.

Letting

Y ðtÞ �

yðtÞ
slðtÞ
sbðtÞ
skðtÞ

0BB@
1CCA; F ðt; Y ; l; b; kÞ �

f
of
oy sl þ

of
ol

of
oy sb þ

of
ob

of
oy sk þ

of
ok

0BBBB@
1CCCCA;

we have the new ODE system

dY
dt

¼ F ðt; Y ; l; b; kÞ:

Similar to (12), the backward Euler method yields the nonlinear system

0 ¼ GðYnÞ � Yn � hF ðtn; Yn;l; b; kÞ � Yn�1: ð16Þ

Due to the form of F , the Jacobian matrix oG=oY has the lower block triangular structure

oG
oY

¼ I � h
oF
oY

¼

I � h of
oy

�hJl I � h of
oy

�hJb I � h of
oy

�hJk I � h of
oy

0BBBB@
1CCCCA ð17Þ

with

Jl ¼
o

oy
of
oy

sl

�
þ of

ol

�
and so on for Jb and Jk. Higher-order BDFs also yield Jacobian matrices oG=oY with this same lower block
triangular structure, and with identical block-diagonal entries of the form I � hb0ðof =oyÞ. The nonlinear

systems GðYnÞ ¼ 0 are solved by using the simultaneous corrector method [31], a technique in which the

Newton iteration uses the block-diagonal portion of oG=oY as the linear system matrix. This results in a

decoupling that allows I � hb0ðof =oyÞ to be used repeatedly in solving the four linear systems that arise in

sequence: one linear system for the Newton correction to the ODE variables; and three other linear systems

for the corrections to the three sensitivity vectors. Because all of the Jacobian matrices are identical, the

latter systems are solved using the same preconditioner and/or linear system solver that were specified for

the original ODE problem.
Given knowledge only of f , computation of the derivatives found in F can be difficult. In this work, we

approximate these derivatives with centered finite difference techniques, e.g.,

of
oy

sl þ
of
ol

� f ðt; y þ dsl; lþ d; b; kÞ � f ðt; y � dsl; l� d; b; kÞ
2d

:

A Taylor series analysis shows that this central difference scheme approximates the sensitivity derivative

with Oðd2Þ accuracy. The choice of the differencing parameter is more delicate than in (13) because the
scalar d is used to perturb y and a given parameter simultaneously. Our heuristic for d is based on several



S.L. Lee et al. / Journal of Computational Physics 192 (2003) 211–230 217
problem-related features, including machine roundoff error and a weighted norm of the given sensitivity

vector. These details and alternative finite difference techniques are described in [30]. One could also use

automatic differentiation techniques such as ADIC [32,33] to compute sensitivity derivatives.

The sensitivity version of CVODE chooses time steps for the BDF methods so that accuracy is ensured

for both solutions of the radiation diffusion system as well as their sensitivities. As in CVODE, implicit

problems are solved at each time step using GMRES, and the same preconditioner is used in solving for the

state variables and sensitivity vectors.

3.4. Types of sensitivities

In addition to the energy sensitivities, the radiation and material temperature sensitivities oTR=op and

oTM=op can be determined. By differentiating the expressions relating energies and temperatures with re-
spect to an opacity parameter

oER

op
¼ 4aT 3

R

� � oTR
op

; ð18Þ
oEM

op
¼ oEOSðTMÞ

oTM

oTM
op

; ð19Þ

the temperature sensitivities can be determined using the energies and their sensitivities.

In our analysis work involving temperatures, the temperature sensitivities are often more useful if they

are scaled by certain quantities. By scaling these sensitivities, one can create scaled and normalized sensi-

tivities. One notable property of scaled sensitivities such as

l
oTR
ol

and l
oTM
ol

is that they share the same units as the solution quantities TR and TM. These sensitivities can then be used in

a first-order Taylor series expansion, e.g.,

TRðt; ell; b; kÞ � TRðt; l; b; kÞ þ
ell � l
l

� �
l
oTR
ol

; ð20Þ
TMðt; ell; b; kÞ � TMðt; l; b; kÞ þ
ell � l
l

� �
l
oTM
ol

; ð21Þ

to give a first-order prediction of solution values due to small relative changes in nominal values of a

parameter, such as ðell � lÞ=l. Scaled sensitivities indicate the magnitude and direction of changes in the

nominal solution based on a small relative increase in a nominal parameter value.

Normalized sensitivities, e.g.,

gR ¼ l
oTR
ol

� ��
TR and gM ¼ l

oTM
ol

� ��
TM ð22Þ

can be used to estimate the relative change in the solution

oTR
TR

¼ ol
l
gR and

oTM
TM

¼ ol
l
gM ð23Þ

given a relative change in the nominal parameter value, ol=l. These sensitivities are dimensionless and are

often used to give comparative information about the relative importance of different parameters within a

physical system.
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3.5. Sensitivity software

In recent years, general use packages have become available to aid in the computation of solution

sensitivities using the sensitivity equation method described above.

One such package is CVODES [34] developed at Lawrence Livermore National Laboratory. This

package includes capabilities for augmenting an ODE solver with the sensitivity equations as discussed

above. The ODE solver is CVODE, a C language rewrite of the VODPK package which evolved from

LSODE [35]. The CVODES package is written in a ‘‘data structure neutral’’ manner, meaning that all

operations on vectors (the simulation data needed by the package) are done through a set of pre-defined

interfaces to the computational kernels. Users can either invoke the serial or parallel default vector kernels
or supply their own. As a result, the CVODES package assumes no specific layout or structure to the users�
data, and the package is reasonably easy to combine with a pre-existing simulation code (as long as

the parameters for sensitivity analysis are handled in an implicit manner). The Livermore group will be

releasing sensitivity versions of their C language DAE and nonlinear system solvers soon as part of

SUNDIALS (suite of nonlinear and differential/algebraic solvers) [36].

Petzold and others have developed another set of packages for sensitivity analysis of Fortran codes. The

package DASPK3.0 [31,37,38] is a Fortran package that solves the augmented system of DAEs and sen-

sitivity equations. This package is also written in a data structure neutral manner as described above and
consequently can also be combined with pre-existing simulation codes fairly easily.

Both CVODES and DASPK3.0 have hooks for using automatic differentiation codes for the compu-

tation of derivatives in the right-hand side of the sensitivity equations. Automatic differentiation packages

use parsing techniques to differentiate computer codes to get mathematical derivatives. Two popular

packages for this functionality are ADIFOR [39] and ADIC [32] for Fortran and C language codes,

respectively.
4. Model problems

We now consider the development, interpretation, and expense of computing sensitivities in addition to

solutions for radiation diffusion problems. For this discussion, we use a suite of test problems based on

aluminum and beryllium. The problems are one-dimensional so that we can concentrate on the meaning

and expense of sensitivities without undue expense of solutions. We chose the materials aluminum and

beryllium because they behave somewhat differently in the regimes we study, and thus they require some

differences in interpretation. In addition, we consider both closed and open systems so that, again, we can
see some differences in the interpretation of sensitivities. Section 5 will go in depth on the solutions and

sensitivities for our problems so that we can demonstrate exactly what sensitivities mean for radiation

diffusion systems. Below, we give specific information on the test cases.

The densities used for aluminum and beryllium are 2.70 and 1.85 g cm�3, respectively. The analytical

formulas for the equation of state

EM ¼ p�
ðcs � 1Þ q

aT b
M ð24Þ

and Rosseland mean opacity

jRðT ; qÞ ¼ bT lqk ð25Þ

are based on the parameters given in Table 1, and are derived from [22]. For example, the Rosseland mean

opacity parameters are straightforward to obtain given that qjR ¼ l�1
R , the reciprocal of the Rosseland



Table 1

Parameters for equation of state and Rosseland mean opacity

Parameter Al Be

a 0.937 0.9976

b 1.145 1.0042

cs 1.43 1.57

p� (g1�a cm3a�1 ls�2 eV�b) 1.99e) 1 5.23e) 1

b (g�k�1 cm3kþ2 eV�l) 5.0e+ 7 5.8824e+ 10

l )2.0 )4.2
k 0.3 0.8
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mean-free path. From the parameter values in Table 1, the multiplier b in (25) is l�1
� and the respective

exponents for temperature and density in (25) are also easy to deduce. We further assume that the Planck

mean opacity is roughly 5–10 times larger than the Rosseland mean opacity [40], and we use the

approximation

jPðTM; qÞ ¼ 5jRðTM; qÞ: ð26Þ
4.1. Closed system

Our first model problem simulates the diffusion of radiation into a system in which there are reflecting

boundaries. Since total energy is always conserved and all fluxes at the boundaries are zero, the steady-state

temperature for the system can easily be computed given

aT 4
steady þ EOSðTsteadyÞ ¼

X
ðERðt0Þ þ EMðt0ÞÞ: ð27Þ

Besides being physically interesting, the closed system problem tells us in a simple and direct way the degree

to which energy is conserved in the code and, consequently, to what level the sensitivities can be believed. It
does no good, for example, to examine sensitivities to one part in 1000 if the code conserves energy to one

part in 100; the sensitivities are then merely reflecting the lack of energy conservation. For the closed system

test problems in Section 5, the relative error in the total energy at steady state is less than 10�9 in magnitude.

This tight energy conservation gives us confidence that the sensitivities quoted in this paper are indeed due

to physics and not numerics.

The radiation diffusion model is solved in the domain 06 x6 0:1 cm, 06 y, z6 1 cm with homogeneous

Neumann boundary conditions on all of the faces. For initial conditions, ER ¼ aT 4
R;0 and EM ¼ EOSðTM;0Þ

where

TR;0 ¼ 1000 eV; 0:046 x6 0:06 cm; otherwise 200 eV; ð28Þ
TM;0 ¼ 200 eV; 06 x6 0:1 cm: ð29Þ

The spatial grid was uniform and consisted of 50� 1� 1 gridpoints. Before we continue, a comment is in

order concerning the regime of applicability of the Basko analytic form of the opacity [22]. Technically, our

test problems encounter temperature regimes outside of the range of validity. It must be remembered,
however, that we are not trying to simulate an actual physical experiment, but rather we are merely using it

as a reasonable representation of the opacity so as to elucidate the effects of strong parameter nonlinearity

on sensitivity.
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4.2. Marshak wave

Our second test problem is the one-dimensional Marshak wave. The radiation diffusion model is solved

in the domain 06 x6 0:1 cm, 06 y; z6 1 cm with Dirichlet boundary conditions of TR ¼ 300 eV at x ¼ 0 cm

and TR ¼ 30 eV at x ¼ 0:1 cm and homogeneous Neumann boundary conditions on the other faces. The

initial conditions in the interior were TR;0 ¼ TM;0 ¼ 30 eV. The spatial grid was uniform and consisted of

50� 1� 1 gridpoints.
5. Numerical results

The purpose of this section is to demonstrate our sensitivity analysis technique as applied to the model

problems described above. In addition to descriptions of solution and sensitivity behavior, surface and line

plots are included to enhance our understanding of the radiation diffusion process. Our first set of examples

simulates radiation diffusion in the closed system test problem. In particular, we first present a detailed

analysis for aluminum and its sensitivity to the temperature exponent l. This extended analysis is helpful as

a basis for comparison when other materials or sensitivity parameters are considered. The second set of

examples is for the Marshak wave problem, and we also begin with the results for aluminum and l. Lastly,
the cost of computing solutions and sensitivities for the test problems is tabulated and we explain the

reasons for the differences in total time to solve the problem.
5.1. Closed system

Our first closed system example is a detailed study of radiation diffusion through a slab of aluminum.

Initial conditions are given in (28), (29). The surface plots in Fig. 1 show the radiation and material

temperatures as they vary in time and along the x-axis in space. The process of material energy transfer is

faster and occurs on a shorter time scale than the one for energy diffusion. To adequately capture the details

of these processes, a logarithmic scale is used for the axis in time. During the first 10�9 ls, the peak value for

radiation temperature decreases and the square-wave profile broadens slightly. The material temperature,

however, has a more noticeable change as the loss of radiation temperature leads to an increase in the
material temperature. This initial increase is governed by the material energy Eq. (2) and partly depends on

the temperature difference aðT 4
M � T 4

RÞ. The rate of increase also depends on and is slightly damped by the

Planck mean opacity jPðTM; qÞ, which decreases as the material temperature increases. These considerations

also help account for the rate of decrease in the peak radiation temperature since the right-hand side of (2)

appears as a negative source term in the radiation energy Eq. (1). The critical period between 10�9 and 10�6

ls is when the radiation and material temperatures couple rapidly. The peak radiation temperature drops

below 1000 eV, and the material temperature peaks at 245 eV. Between 10�6 and 10�3 ls, radiation and

material temperatures are nearly in equilibrium and they begin to diffuse throughout the rest of the spatial
domain. The rate of diffusion is primarily influenced by the Rosseland mean opacity jRðTR; qÞ. The dif-

fusion process behaves like a Marshak wave centered around 0:05 cm with wavefronts that simultaneously

move toward the left and right boundaries as the height of the wave falls. Between 10�3 and 0.1 ls, the
radiation and material temperatures are essentially in equilibrium except the wavefront for radiation

temperature slightly leads that for material temperature. Temperatures range within [200; 240] eV and

eventually approach the common steady state temperature of 209.4 eV after about 0.4 ls. For comparison

and more detail, we also compute and plot solutions for radiation and material temperatures as they vary in

time at x ¼ 0:05 cm; see Fig. 2. The middle line plots correspond to temperatures computed using the
nominal value for the temperature exponent, l ¼ �2:0. The other line plots correspond to solutions



Fig. 1. Radiation and material temperatures for 1D radiation diffusion through aluminum shown as surface plots across time and

space for the closed system model problem. (a) Radiation temperature for aluminum. (b) Material temperature for aluminum.

Fig. 2. Radiation and material temperatures at x ¼ 0:05 cm for radiation diffusion through aluminum. Solutions are computed for

three different values for the temperature exponent l. (a) Radiation temperature for aluminum. (b) Material temperature for alumi-

num.
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computed when l is increased or decreased by 20%, and show that the nominal solution is affected by the

value of l.
In general, how sensitive is the above simulation to changes in l or the other nominal values of the mean

opacity parameters? The change in the nominal solutions can be estimated based on a rearrangement of the

first-order Taylor series (20), (21). At each time step, the change in the nominal solutions is proportional to

the scaled sensitivities, and the proportionality factor is the relative change in the parameter. For example,

the surface plots in Fig. 3 show the scaled sensitivities with respect to the temperature exponent l. The time,
location, and nonzero values indicate when, where, and to what extent the nominal solution is predicted to

change. Physically, a positive relative change in l increases the mean opacities so that the larger Planck

opacity accelerates the rate at which the radiation and material temperatures couple and the larger

Rosseland opacity impedes the rate at which the coupled temperatures diffuse before reaching steady state.

This information is revealed by the scaled sensitivities though some skill of interpretation is required. For

example, it is important to notice that the upward sensitivity spike in Fig. 3(b) occurs slightly earlier in time

than the material temperature rise in the nominal solution. This means the material temperature will



Fig. 3. Scaled sensitivity with respect to temperature exponent l for 1D radiation diffusion through aluminum shown as surface plots

across time and space for the closed system model problem. (a) Scaled sensitivity for radiation temperature in aluminum. (b) Scaled

sensitivity for material temperature in aluminum.
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increase earlier in time and in proportion to the relative increase in l. Similarly, the negative sensitivity

values corresponding to the downward spike in Fig. 3(a) predicts sharply reduced values for the nominal

radiation temperature. Those lower temperatures correspond to the radiation temperature dropping sooner

in time as it reaches equilibrium with the material temperature. After 10�6 ls, the later scaled sensitivity

values are the same in both surface plots. As the radiation and material temperatures are essentially in

equilibrium, they become equally sensitive to the same parameter. The elevated values after 10�3 ls indicate
that the nominal temperatures are proportionally higher and do not fall as rapidly to steady state. Lastly,

note that the sensitivity to the Planck and Rosseland mean opacities are decoupled in time. The downward
and upward spikes that occur earlier in time are essentially the scaled sensitivities with respect to the

temperature exponent l in the Planck mean opacity. The identical sensitivities that occur later reveal the

scaled sensitivities with respect to the temperature exponent in the Rosseland mean opacity.

We next consider the case in which beryllium is used for this model problem. Beryllium is less opaque

than aluminum. In this case, the energy transfer governed by the Planck opacity is less rapid and more time

is needed for temperatures to couple. Note that in Fig. 4, the radiation and material temperatures have the

same, initial square-wave and flat profiles; however, the temperature coupling is somewhat delayed until

about 10�6 ls. The peak material temperature is 248.3 eV, and the steady-state temperature of 215.7 eV is
reached after about 0.006 ls. It is also evident that the coupling and diffusion processes do not occur in

separate phases. The broadened face for radiation temperature indicates that its temperature is diffusing

even as it falls. The material temperature also diffuses toward the boundaries as its peak value is attained.

This overlap of processes is also revealed in the scaled sensitivity plots in Fig. 5. The radiation temperature

sensitivity shows that the downward spike has diffused to the boundary. The material temperature sensi-

tivity shows that the upward spike due to sensitivity in the Planck opacity is fused with the nonzero sen-

sitivities that come from the Rosseland opacity.

5.2. Marshak wave

For the Marshak wave problem, the behavior of the radiation and material temperatures is roughly the

same whether the material slab is composed of aluminum or beryllium. In the initial stage, the radiation

temperature heats up more rapidly than the material temperature along the left boundary. As the radiation
temperature reaches its peak value, it forms a wavefront that begins to move across to the right boundary.



Fig. 5. Scaled sensitivity with respect to temperature exponent l for 1D radiation diffusion through beryllium shown as surface plots

across time and space for the closed system model problem. (a) Scaled sensitivity for radiation temperature in beryllium. (b) Scaled

sensitivity for material temperature in beryllium.

Fig. 4. Radiation and material temperatures for 1D radiation diffusion through beryllium shown as surface plots across time and space

for the closed system model problem. (a) Radiation temperature for beryllium. (b) Material temperature for beryllium.
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Eventually, the material temperature reaches the same peak value along the left boundary and forms a

wavefront that only slightly lags behind the radiation temperature wavefront. As in the closed system, the

temperatures are nearly in equilibrium as the wavefronts move to the boundary; however, the Dirichlet

boundary conditions ensure that the wave heights peak and do not fall as the wavefronts move across the
domain. An example of the radiation wavefront for aluminum is given in Fig. 6(a).

The behavior of the sensitivities is also similar for the different materials and with respect to the opacity

parameters l, b, and k. A typical example is given in Fig. 6(b), which shows the scaled sensitivity of the

radiation temperature with respect to l. Note that the sensitivities have sharp, negative peaks concentrated

around the wavefront. As with the closed system, the negative sensitivity values predict sharply reduced

values for the nominal radiation temperature given a positive relative change in l. Those lower tempera-

tures correspond to the radiation temperature lagging behind the nominal temperatures as the wavefront

tries to diffuse through a more opaque material.



Fig. 6. Radiation temperature and its scaled sensitivity with respect to the temperature exponent l for 1D radiation diffusion through

aluminum for the Marshak wave model problem. (a) Radiation temperature for aluminum. (b) Scaled sensitivity for radiation tem-

perature in aluminum.
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5.3. Run times

The run time cost of computing scaled sensitivities is relatively inexpensive. Tables 2 and 3 show the run

time and solver performance for computing the radiation diffusion solution and its scaled sensitivity with
respect to zero, one, or all three parameters for the model problems. The key question is: how much ad-

ditional run time is required in computing sensitivity information? In pairing each material and model

problem, the tables show that the total number of time steps (NST) is approximately the same within each

pairing and that this statistic only varies slightly when sensitivities are computed. The significant point for

beryllium is that the average number of Newton iterations per timestep (NNI) is roughly 1.2 whether zero,

one, or three scaled sensitivities are computed. In each Newton iteration, 1þ m linear systems are solved

where m is the number of scaled sensitivities to be computed. The average number of linear iterations (NLI)

of GMRES per Newton iteration roughly increases by a factor of 1þ m and indicates that solving for
Newton updates to energies or sensitivities is of comparable difficulty. For the aluminum test results, the

average number of Newton iterations increases by a factor of 1.5–3 when computing scaled sensitivity with

respect to a single parameter, and this increased work in converging Newton iterations roughly quadruples

the run time. Despite this fourfold increase for a sensitivity computation, we note only a modest increase

when additional sensitivities are computed (e.g., all three). So, although individual sensitivity computations

may more than double the run time of the original simulation, the cost-effectiveness can improve when

several sensitivities are computed together. Lastly, Table 4 shows some results for computing all three

scaled sensitivities and/or the solution for larger problem sizes for the closed system problem. The run times
Table 2

Aluminum solver statistics: solution and scaled sensitivities

Closed system Marshak wave

Time (s) Total NST Avg NNI Avg NLI Time (s) Total NST Avg NNI Avg NLI

None 2.63 456 1.14 2.57 10.36 1311 1.10 4.33

l 11.08 453 2.41 4.80 55.60 1335 3.02 7.66

b 10.02 458 2.13 4.85 52.98 1319 2.99 7.38

k 8.15 462 1.63 5.26 50.56 1319 2.94 7.09

l; b; k 25.25 458 2.33 11.47 133.09 1335 3.02 18.74



Table 3

Beryllium solver statistics: solution and scaled sensitivities

Closed system Marshak wave

Time (s) Total NST Avg NNI Avg NLI Time (s) Total NST Avg NNI Avg NLI

None 6.58 791 1.20 4.05 20.60 1863 1.18 5.96

l 14.48 790 1.21 8.48 43.68 1912 1.19 11.68

b 12.92 781 1.17 7.75 40.00 1911 1.17 10.68

k 12.53 781 1.17 7.45 38.62 1894 1.16 10.41

l; b; k 27.62 790 1.18 15.84 79.41 1872 1.18 20.76

Table 4

Closed system results for larger problem sizes: run time in seconds for solution and scaled sensitivities

Al Be

100� 1� 1 250� 1� 1 500� 1� 1 100� 1� 1 250� 1� 1 500� 1� 1

None 5.16 13.46 29.90 21.73 120.50 466.13

l; b; k 50.93 140.09 320.77 95.76 550.94 3270.00
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for aluminum are consistent with our earlier observations: computing all three scaled sensitivities increases

the run time roughly by a factor of 10 relative to solving the simulation by itself. The run time results for

beryllium are also favorable. The relative increase in run time ranges only by a factor of 4–7 for increased

problem sizes.
6. Sensitivity applications

In this section, we demonstrate the usefulness and versatility of sensitivity computations as applied to the

analysis of radiation diffusion models.

6.1. Model evaluation

One application of sensitivity analysis focuses on the sensitivity of model behavior due to perturbations

in the nominal parameter values. The objective of such analysis is to identify the parameters most influ-

ential in affecting simulation results. Given that each nominal parameter value is typically chosen from a
range of values, our confidence in simulation results can be enhanced by narrowing the range of uncertainty

for the most influential parameters. This range can be narrowed, for example, by taking additional mea-

surements that yield a more accurate determination of the parameter range. A complementary objective is

to identify parameters for which simulation results are not sensitive. By identifying the most insensitive

parameters, it may be possible to create a reduced model with fewer equations and/or parameters but this

topic is beyond the scope of this paper.

The relative ranking of most to least influential parameters can be obtained by examining the magnitude

of the simulation response to relative perturbations in the mean opacity parameters. In particular, the
scaled sensitivities of largest magnitude (positive or negative) can be plotted at each gridpoint for each

parameter for all time. An example is given in Fig. 7 for the radiation and material temperatures of alu-

minum in the closed system. The nested line plots in Fig. 7(a) signify that the radiation temperature ex-

periences the largest amount of change due to relative perturbations in l, b, and k respectively. Fig. 7(b)

shows that this nesting and strict ranking also holds for the material temperature. Analogous plots for the



Fig. 7. Maximum magnitude of scaled sensitivities in time for radiation diffusion through aluminum for closed system model problem.

(a) Maximum scaled sensitivity for TR. (b) Maximum scaled sensitivity for TM.
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other three pairings of test problems and materials yield the same ranking order. Therefore, we conclude

that uncertainty in the temperature exponent l is most significant in affecting the uncertainty in the sim-

ulation results.

Another useful technique for this example is to visualize sensitivities and the simulation solution to-

gether. If we consider normalized sensitivities, we can assess the relative changes in the simulation solution

versus relative perturbations in the mean opacity parameters. The surface plots in Fig. 8 show the simu-

lation solution for aluminum in the closed system, so they are the same as in Fig. 1. Note, however, that the

surface colors in Fig. 8 correspond to the normalized sensitivity with respect to l. The magnitudes for these
normalized sensitivities are given by the different colorbars in Fig. 8. For a relative perturbation in l, the
relative changes in the radiation and material temperatures are proportional to the value of their corre-

sponding normalized sensitivities. Fig. 8(a) and (b) show that the relative changes are the greatest as the two

temperatures come into equilibrium at around 10�9 ls. The greater portion of both surface plots, however,

show that the simulation solution has zero sensitivity to initial perturbations in the parameters. It is mainly
Fig. 8. Radiation and material temperature for radiation diffusion through aluminum in the closed system. Surface colors correspond

to normalized sensitivity with respect to temperature exponent l. (a) Radiation temperature. (b) Material temperature.
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when temperature coupling or diffusion is active that the simulation solution has increased responsiveness,

which the overlaid normalized sensitivities help identify and quantify.

6.2. Experimental design

With the advent of new technology, real time, in situ diagnostics are a distinct possibility. An example

would be advanced sensors that might measure the temperature and density inside a material that is being

shocked and heated. Such dynamic information would provide a wealth of data concerning equation of

state and opacity. Sensitivity analysis is a tool that can guide experimental design and diagnostics in such a

way as to make maximum use of the experiment. Going further, sensitivity analysis can tell us where and

when the maximum sensitivity occurs and in what variable. For example, in the Marshak wave problem,

the sensitivity calculations in Fig. 6(b) show that the arrival time of the radiation temperature front is a very
sensitive indicator of opacity variations. An experimentalist, therefore, might choose to measure the arrival

time of the radiation temperature and thereby obtain an accurate determination of an opacity parameter

[41].

6.3. Uncertainty quantification

A third application of sensitivity analysis is in bounding the amount of uncertainty in the simulation

results in terms of the amount of uncertainty in the model parameters. In some cases, many parameter

measurements are available, and probability density functions (pdfs) or at least the variances for the

parameters are known. In such instances, particular sensitivity techniques can be used to determine a first-

order estimate of the pdfs or variances for the simulation results. If we assume a uniform parameter

distribution or simply that the parameters lie in a fixed range, the scaled sensitivities can also be used to
bound the range for the simulation results.

We can demonstrate this uncertainty quantification for the closed system test problem for aluminum

based on the nominal solution, its scaled sensitivity with respect to l, and (20), (21). In Fig. 9(a), the middle

line plot shows the radiation temperature as it varies in time and goes to steady state at x ¼ 0:05 cm. By

assuming that the nominal parameter l ¼ �2:0 varies by at most 20%, we are able to bound the uncertainty

of the radiation temperature based on its scaled sensitivity. Similarly, Fig. 9(b) bounds the uncertainty in
Fig. 9. Radiation and material temperatures, with bounds estimated for �20% uncertainty in the temperature exponent l for radiation

diffusion through aluminum in the closed system. (a) Radiation temperature. (b) Material temperature.
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the material temperature due to the uncertainty in l. Note that the simulation uncertainty is large at two

separate times: during the process of material energy transfer, and during the diffusion process. We also find

that these bounds are good first-order predictions of the solutions computed when l is changed by �20%.

In particular, the solutions plotted in Fig. 2 are in good agreement with those predicted in Fig. 9. The most

notable difference is the slight undershoot and overshoot in the predicted radiation and material temper-

atures, respectively. The predictions are more accurate, however, if the relative change in the nominal value

is more modest or a less influential parameter (i.e., b or k) is studied.
7. Conclusions

We have developed and introduced new sensitivity-based methods for the analysis of radiation diffusion

problems. The proposed techniques are applied to simplified but physically realistic models of radiation

diffusion and material opacity. The sensitivity equations are derived by differentiating the radiation and

material energy equations with the respect to the mean opacity parameters. Sensitivities are computed by

solving the derived equations in tandem with the simulation, rather than using a finite difference technique
based on running the simulation with two different values of the same parameter. Our main contribution

was to address several important questions related to the simulation results and their sensitivity to the mean

opacity parameters. These questions centered on the effects of changes in the opacity parameter values, the

cost of computing sensitivities, the identification of the most and least influential parameters, and the use of

sensitivities for experimental design and uncertainty quantification. The significance of our work is that we

can answer these questions based on the sensitivity analysis techniques that we have developed.

One of the main conclusions of this work is that obtaining solution sensitivities is not an expensive

computation compared to the run time cost of computing the solution by itself – the ratio ranged between
2–14 depending on the test problem, material, and parameters selected. The second finding is that com-

puting sensitivities is an effective technique for obtaining valuable information about the simulation. A

coarse intuition of model behavior and sensitivities can be developed from a general understanding of the

model problem and the underlying physics. As demonstrated, a study of scaled sensitivities can provide

supplemental, quantitative details that may be difficult to deduce from first principles – such as the location

and duration for when sensitivities are relatively large or small. Lastly, we conclude that sensitivity-based

techniques for uncertainty quantification are effective tools for improving user confidence in simulation

results. We demonstrated that sensitivities can be used to give a first-order estimate of the uncertainty in
simulation results in terms of the uncertainty in each parameter value. Moreover, experimental design

techniques are one means of determining where additional experimental measurements may be needed to

tighten the bounds on parameter uncertainties. We also discussed that with recently developed software

(Section 3.5), existing codes can be reasonably modified to compute sensitivities with this approach. Future

work in this area will include the application of these sensitivity-based techniques to other radiation dif-

fusion and parameter-dependent scientific problems.
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